Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EPMA J ; 13(2): 261-284, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1930583

ABSTRACT

COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood-brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised; for example, "What are the hallmarks of neurodegeneration during COVID-19 infection?" and "Are epigenetics promising solution against post-COVID-19 neurodegeneration?" In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, "What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?" especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).

2.
The EPMA Journal ; : 1-24, 2022.
Article in English | EuropePMC | ID: covidwho-1876978

ABSTRACT

COVID-19-caused neurological problems are the important post-CoV-2 infection complications, which are recorded in ~ 40% of critically ill COVID-19 patients. Neurodegeneration (ND) is one of the most serious complications. It is necessary to understand its molecular mechanism(s), define research gaps to direct research to, hopefully, design new treatment modalities, for predictive diagnosis, patient stratification, targeted prevention, prognostic assessment, and personalized medical services for this type of complication. Individualized nano-bio-medicine combines nano-medicine (NM) with clinical and molecular biomarkers based on omics data to improve during- and post-illness management or post-infection prognosis, in addition to personalized dosage profiling and drug selection for maximum treatment efficacy, safety with least side-effects. This review will enumerate proteins, receptors, and enzymes involved in CoV-2 entrance into the central nervous system (CNS) via the blood–brain barrier (BBB), and list the repercussions after that entry, ranging from neuroinflammation to neurological symptoms disruption mechanism. Moreover, molecular mechanisms that mediate the host effect or viral detrimental effect on the host are discussed here, including autophagy, non-coding RNAs, inflammasome, and other molecular mechanisms of CoV-2 infection neuro-affection that are defined here as hallmarks of neuropathology related to COVID-19 infection. Thus, a couple of questions are raised;for example, “What are the hallmarks of neurodegeneration during COVID-19 infection?” and “Are epigenetics promising solution against post-COVID-19 neurodegeneration?” In addition, nano-formulas might be a better novel treatment for COVID-19 neurological complications, which raises one more question, “What are the challenges of nano-bio-based nanocarriers pre- or post-COVID-19 infection?” especially in the light of omics-based changes/challenges, research, and clinical practice in the framework of predictive preventive personalized medicine (PPPM / 3P medicine).

3.
Environ Sci Pollut Res Int ; 28(39): 54209-54221, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1353724

ABSTRACT

COVID-19 pandemic waves hitting worldwide result in drastic postinfection complications with interindividual variations, which raised the question for the cause of these observed variations. This urged to think "the impact of environment-affected genes"? In an attempt to unravel the impact of environment-affected genes, a systematic rapid review was conducted to study "the impact of host or viral epigenetic modulation on COVID-19 infection susceptibility and/or outcome." Electronic databases including Web of Science, SCOPUS, Cochrane Central Register of Controlled Trials, PubMed, and Google Scholar, and other databases were searched. The search strings included "COVID-19" OR "SARS-CoV-2" AND (Epigenetics'). Articles with randomized clinical trials (RCTs) and observational study designs, conducted on humans and available in the English language, were selected, with respect to "The interplay between the SARS-CoV-2 virus and Epigenetics" published from 2020 to February 2021 (but not limited to 2020, being expanded to 2015). Database search yielded 1330 articles; after screening, exclusion, and further filtrations, 51 articles were included. Susceptibility to COVID-19 infection is related to the viral-microRNAs (miRNAs) which alter virulence of the transmitted SARS-CoV-2 strains and impact host-miRNA-related innate immunity. Host-DNA methylation and/or chromatin remodeling may be implicated in severe cytokine storm that can ultimately results in fatal outcome.


Subject(s)
COVID-19 , Epigenesis, Genetic , Humans , Observational Studies as Topic , SARS-CoV-2
4.
Eur J Pharm Sci ; 153: 105465, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-639701

ABSTRACT

COVID-19, is a disease resulting from the SARS-CoV-2 global pandemic. Due to the current global emergency and the length of time required to develop specific antiviral agent(s) and a vaccine for SARS-CoV-2, the world health organization (WHO) adopted the strategy of repurposing existing medications to treat COVID-19. Iron oxide nanoparticles (IONPs) were previously approved by the US food and drug administration (FDA) for anemia treatment and studies have also demonstrated its antiviral activity in vitro. Therefore, we performed a docking study to explore the interaction of IONPs (Fe2O3 and Fe3O4) with the spike protein receptor binding domain (S1-RBD) of SARS-CoV-2 that is required for virus attachment to the host cell receptors. A similar docking analysis was also performed with hepatitis C virus (HCV) glycoproteins E1 and E2. These studies revealed that both Fe2O3 and Fe3O4 interacted efficiently with the SARS-CoV-2 S1-RBD and to HCV glycoproteins, E1 and E2. Fe3O4 formed a more stable complex with S1-RBD whereas Fe2O3 favored HCV E1 and E2. These interactions of IONPs are expected to be associated with viral proteins conformational changes and hence, viral inactivation. Therefore, we recommend FDA-approved-IONPs to proceed for COVID-19 treatment clinical trials.


Subject(s)
Coronavirus Infections/drug therapy , Ferric Compounds/therapeutic use , Metal Nanoparticles/therapeutic use , Molecular Docking Simulation , Pneumonia, Viral/drug therapy , COVID-19 , Drug Approval , Drug Repositioning , Humans , Pandemics , Protein Conformation , Spike Glycoprotein, Coronavirus/drug effects , United States , United States Food and Drug Administration , Viral Envelope Proteins/drug effects , Viral Envelope Proteins/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL